
Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, Danyang Zhuo

Can LLMs Verify System Software?
A Case Study Using FSCQ as a Benchmark

1

System Lines of Code Lines of Proof Human Effort

seL4 (2009) ~10k ~200k 22py

CertiKOS (2016) ~6k ~50k 2py

CompCert (2008) ~6k ~36k 3py

DFSCQ (2017) ~12k ~72k -

System software verification is labor-intensive
Verification requires many times more proof than code

Can LLMs augment or replace the manual verification of system software?

2

Existing Work
Mathematics

• Informal theorem proving

• Formal theorem proving

• Tactic generation (GPT-f)

• Proof search

• Premise selection (LeanDojo)

Software Verification

• Automated theorem proving

• Invariant synthesis

• Interactive theorem proving

• Small programs (FVEL)

• System software (Selene, Rango)

3

Customized logics

DFSCQ formalizes crash-consistency using Crash Hoare Logic (CHL)

System software poses unique challenges for LLMs
Real-world complexity

DFSCQ models concrete behaviors like disk I/O, crashes, and recovery

Substantial project size

DFSCQ contains hundreds of theorems and lemmas across many files

4

System Design
We built a system based on GPT-f and augmented with proof context

LLM Proof
Search

Coq
STMProof

Context

Command

Coq
 State

Next
Tactic

5

System Design: Proof Search (GPT-f)

Initial State 1

6

System Design: Proof Search (GPT-f)

Initial State

Next Tactic

Updated State

-1.5 -0.2-0.3

1

7

System Design: Proof Search (GPT-f)

Initial State

Next Tactic

Updated State

-1.5 -0.2-0.3

-0.8 -1.2

1

2

8

Initial State

Next Tactic

Updated State

-1.5 -0.2-0.3

-0.8 -1.2-0.5 -0.4-1.0

1

3 2

System Design: Proof Search (GPT-f)

9

Initial State

Next Tactic

Updated State

-1.5 -0.2-0.3

-0.8 -1.2

4

-0.5 -0.4-1.0

1

3 2

System Design: Proof Search (GPT-f)

10

Initial State

Next Tactic

Updated State

-1.5 -0.2-0.3

-0.8 -1.2

5 4

-0.5 -0.4-1.0

1

3 2

System Design: Proof Search (GPT-f)

11

Initial State

Next Tactic

Updated State

-1.5 -0.2

-0.8 -1.2

5 4

-0.4-1.0

1

3 2

System Design: Proof Search (GPT-f)

12

System Design: Proof Context
Proofs may rely on surrounding context

13

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intuition.

 eapply SDIR.crash_rep; eauto.

 inversion H; intuition subst; cbn in *.

 congruence.

 Qed. DirCache.v

System Design: Proof Context
Proofs may rely on surrounding context

14

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intuition.

 eapply SDIR.crash_rep; eauto.

 inversion H; intuition subst; cbn in *.

 congruence.

 Qed. DirCache.v

In-Theorem Context

System Design: Proof Context
Proofs may rely on surrounding context

15

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intuition.

 eapply SDIR.crash_rep; eauto.

 inversion H; intuition subst; cbn in *.

 congruence.

 Qed. DirCache.v

Provide statements of accessible definitions, lemmas, and theorems

In-Theorem Context

Additional Context

System Design: Proof Context
Proofs may be similar to other proofs

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intuition.

 eapply SDIR.crash_rep; eauto.

 inversion H; intuition subst; cbn in *.

 congruence.

 Qed. DirCache.v

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intros.

 repeat deex.

 eexists; intuition eauto.

 eapply DIR.crash_rep; eauto.

 Qed. DirName.v

16

System Design: Proof Context
Proofs may be similar to other proofs

Provide proofs of lemmas and theorems as “hints”

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intuition.

 eapply SDIR.crash_rep; eauto.

 inversion H; intuition subst; cbn in *.

 congruence.

 Qed. DirCache.v

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

 unfold rep; intros.

 repeat deex.

 eexists; intuition eauto.

 eapply DIR.crash_rep; eauto.

 Qed. DirName.v

17

What context should be provided?

Hint
Additionally provide proofs of 50%
of accessible theorems and lemmas,
selected at random

Vanilla
Provide statements of all accessible
definitions, theorems, and lemmas

System Design: Proof Context

18

Theorem crash_rep : forall f f' m,

 BFILE.file_crash f f' ->

 rep f m ->

 rep f' m.

 Proof.

DirCache.v

Prompt
To Generate

Evaluation
1. How much of FSCQ can be proved?

2. What is the effect of proof context?

3. Which theorems in FSCQ are easier (or harder) to prove?

4. Are models simply memorizing FSCQ’s proofs?

5. What is the effect of model size?

6. When and why do models fail?

19

Evaluation
1. How much of FSCQ can be proved?

2. What is the effect of proof context?

3. Which theorems in FSCQ are easier (or harder) to prove?

4. Are models simply memorizing FSCQ’s proofs?

5. What is the effect of model size?

6. When and why do models fail?

20

Evaluation: How much of FSCQ can be proved?

GPT-4o proves 38% of the sampled theorems

 …and 57% of the sampled theorems under 64 tokens

21

Evaluation: What is the effect of proof context?

Hints improve coverage by between 30% and 145%

Longer context window does not necessarily improve coverage

22

Evaluation: Which theorems are easier to prove?

23

20%File System

52%CHL

58%Utilities

32%

42%

47%

Actual Expected
(With Hints)

Based on lengths of human proofs and
average proof coverage for the
associated range of lengths

Evaluation: Which theorems are easier to prove?

24

20%File System

52%CHL

58%Utilities

32%

42%

47%

Actual Expected
(With Hints)

Based on lengths of human proofs and
average proof completion rate for the
associated range of # tokens

+10%

+11%
Better than expected!

Evaluation: Which theorems are easier to prove?

25

20%File System

52%CHL

58%Utilities

32%

42%

47%

Actual Expected
(With Hints)

Based on lengths of human proofs and
average proof completion rate for the
associated range of # tokens

-12% Worse than expected…

Evaluation: Which theorems are easier to prove?

26

20%File System

52%CHL

58%Utilities

32%

42%

47%

Actual Expected
(With Hints)

16%

43%

40%

24%

32%

36%

Actual Expected
(Vanilla)

Hints improved performance the most on Utilities

58% 40%

Evaluation: Are models memorizing FSCQ’s proofs?
Generated proofs sometimes use lemmas more efficiently

Lemma ndata_log_padded_log : forall a, ndata_log (padded_log a) = ndata_log a.

unfold ndata_log, padded_log, setlen,

roundup; intros.

rewrite firstn_oob by auto.

repeat rewrite map_app.

rewrite repeat_map; simpl.

rewrite nonzero_addrs_app.

setoid_rewrite <- app_nil_l at 3.

rewrite nonzero_addrs_app_zeros; auto.

Original

intros a.

unfold ndata_log.

rewrite nonzero_addrs_padded_log.

reflexivity.

GPT-4o

27

Evaluation: Are models memorizing FSCQ’s proofs?
Generated proofs sometimes use lemmas more efficiently

intros a.

unfold ndata_log.

rewrite nonzero_addrs_padded_log.

reflexivity.

unfold ndata_log, padded_log, setlen,

roundup; intros.

rewrite firstn_oob by auto.

repeat rewrite map_app.

rewrite repeat_map; simpl.

rewrite nonzero_addrs_app.

setoid_rewrite <- app_nil_l at 3.

rewrite nonzero_addrs_app_zeros; auto.

Lemma ndata_log_padded_log : forall a, ndata_log (padded_log a) = ndata_log a.

Original GPT-4o

Additional Context

28

Evaluation: Are models memorizing FSCQ’s proofs?
Generated proofs sometimes use lemmas more efficiently

Lemma tree_name_distinct_head: forall inum name l t,

tree_names_distinct (TreeDir inum ((name, t)::l)) -> tree_names_distinct t.

intros.

inversion H; auto.

inversion H2; subst; auto.

Gemini-1.5 Pro

intros. destruct t.

constructor. inversion H.

rewrite map_cons in H2.

apply Forall_inv in H2.

simpl in H2. inversion H2.

constructor; eauto. Original

29

Discussion: Augmenting human effort

They could also complete partial proofs or fill in missing steps

LLMs naturally fit into human-in-the-loop workflows

Theorem 1

Theorem 2

Theorem 3

Proof 1

LLM
Proof 2

Proof 3

30

Theorem

.........

Proof

1

23

5 4

.........

.........

Discussion: Reasoning Models

High resource consumptionNo interaction with ITP

What about reasoning models?

31

Discussion: Proof Decomposition
Can LLMs generate intermediate lemmas?

Intermediate
Lemmas Proofs

Tactic Generation

32

Discussion: Proof Decomposition
Can LLMs generate intermediate lemmas?

Formal
Theorems

Intermediate
Lemmas Proofs

Decomposition Tactic Generation

33

Conclusion

Can LLMs augment or replace the manual verification of system software?

Open Source
(Code and
Generated

Proofs)

34

Hints significantly improve proof completion rate

LLMs can prove a surprising fraction of FSCQ

Further Discussion / Open Questions

Human Augmentation? Proof Decomposition?

Reasoning Models? Context Retrieval?

Evaluation: Are models memorizing FSCQ’s proofs?

Generated proofs are not direct copies of the originals

35

