
Can Large Language Models Verify System Software?
A Case Study Using FSCQ as a Benchmark.

Jianxing Qin Alexander Du Danfeng Zhang Matthew Lentz Danyang Zhuo
Duke University

Abstract
Large language models (LLMs) have demonstrated remark-
able coding capabilities. They excel in code synthesis bench-
marks across diverse domains and have become ubiquitous in
coding tools. Recently, they have also shown promise in gen-
erating mathematical proofs and small software programs.
In this paper, we explore their potential to produce proofs for
complex system software (e.g., file systems), where verifica-
tion typically requires substantial manual effort. By automat-
ing parts of this process, LLMs could reduce the verification
burden and make rigorous proofs for system software more
accessible. To evaluate LLMs for system software verification,
we use FSCQ, a verified file system, as our benchmark. Our
results confirm the promise of this approach: with appropri-
ate proof context and a straightforward best-first tree search,
off-the-shelf LLMs achieve 38% proof coverage for theorems
sampled from FSCQ. Moreover, for simpler theorems—those
with human proofs under 64 tokens, which make up about
60% of all FSCQ theorems—LLMs achieve over 57% cover-
age. These findings are preliminary, and we anticipate that
various techniques can further improve proof coverage.

CCS Concepts
• Software and its engineering → Formal software ver-
ification; • Computing methodologies→ Artificial intel-
ligence.

Keywords
Formal Methods, System Software, Artificial Intelligence
ACM Reference Format:
Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, and
Danyang Zhuo. 2025. Can Large Language Models Verify System
Software? A Case Study Using FSCQ as a Benchmark.. InWorkshop
on Hot Topics in Operating Systems (HOTOS ’25), May 14–16, 2025,
Banff, AB, Canada. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3713082.3730382

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HOTOS ’25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730382

1 Introduction
System software is a critical infrastructure, and ensuring the
absence of bugs is essential. Formal methods hold signifi-
cant promise for system software verification [16, 20, 39],
but applying these methods to complex system software re-
quires substantial manual effort. Reducing this proof burden
through automation remains a vital area of research [6, 7, 17,
22, 29, 30, 37, 49].
The advent of large language models (LLMs) has opened

new possibilities, achieving state-of-the-art performance in
various code synthesis tasks. For example, the leading sys-
tems in text-to-SQL benchmarks are now exclusively LLM-
based [11]. Code generation has become a staple in mod-
ern software development, integrated into popular IDEs [2,
15]. Beyond code synthesis, LLMs demonstrate impressive
reasoning skills, tackling challenging mathematical prob-
lems, including those from the International Mathematical
Olympiad (IMO) [34, 35].

In this paper, we pose a fundamental question: Can LLMs
replace or augment the manual process of writing proofs for
complex system software? If successful, this approach could
generalize proof automation beyond existing satisfiability
modulo theories (SMT)-based techniques [22, 23].

As an initial step toward answering this question, we eval-
uate the ability of GPT-4o and Gemini variants to generate
proofs for FSCQ [10], a formally verified file system whose
Coq-based proofs guarantee crash safety. We evaluate on
the latest version of FSCQ, which supports deferred writes
and the design and proof techniques are described in the DF-
SCQ paper [9]. Unlike purely mathematical problems, FSCQ
introduces unique challenges, as it involves a large, real-
world codebase unlike existing formal mathematics bench-
marks [3, 48]. Further, FSCQ’s proof goals are tightly coupled
with system software behavior (i.e., crash safety).

Our preliminary results are highly encouraging. By provid-
ing proof context from other parts of the project (emulating
human-in-the-loop development) and applying a best-first
tree search, off-the-shelf LLMsmanaged to achieve 38% proof
coverage for theorems sampled from FSCQ. For simpler the-
orems—with human proofs under 64 tokens—these models
achieved proof coverage exceeding 57%. Note that this cat-
egory encompasses about 60% of all FSCQ theorems. Inter-
estingly, in some cases, LLM-generated proofs were even

34

https://doi.org/10.1145/3713082.3730382
https://doi.org/10.1145/3713082.3730382
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3713082.3730382

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Qin et al.

more concise than human ones. These findings suggest that
LLM-based proof generation could significantly reduce the
manual verification burden for complex system software.

While these results are promising, open questions remain.
First, we did not explore the generation of intermediate lem-
mas, an intellectually demanding aspect of the verification
process. Second, due to GPU resource constraints, we did
not investigate the impact of model training or fine-tuning
on proof generation. Models fine-tuned specifically on Coq
or system software verification may perform even better.

2 Related Work
Traditional ProofAutomation Automated theorem provers
(ATPs) have long relied on logical rules and heuristics to sim-
plify the development of formal proofs. Interactive theorem
provers like Coq, Isabelle, and HOL Light often come with
built-in automated search tactics. For example, Coq includes
automation tactics such as auto and eauto, which are heav-
ily used in system software verification [10, 16, 24].
Another important category of ATP methods involves

SMT solvers, which convert proof goals into satisfiability
problems. Verification tools like Dafny [23], Verus [22], and
F* [38] simplify the use of SMT solvers and have been used
successfully for system software verification [17, 30, 37].

Other popular ATP techniques include superposition, res-
olution, and term rewriting [19, 21]. These methods leverage
logical rules to automate reasoning tasks.
LLMs for Mathematical Proofs The emergence of LLMs
reframed theorem proving as a text generation task. Because
generating entire proofs at once is challenging, state-of-the-
art methods typically produce proofs incrementally, by gener-
ating individual tactics and verifying each tactic with a proof
assistant. GPT-f [35] pioneered this approach, training an
LLM to predict tactics and using cumulative log probabilities
to estimate the likelihood of proof completion. It discovered
new, shorter proofs adopted by the Metamath library. Polu et.
al [34] extended GPT-f with a proofsize objective and expert
iteration, enabling LLMs to solve some IMO problems. Since
these early efforts, substantial progress has been made in
applying LLMs to solve increasingly complex mathematical
problems, including model pretraining [4, 36, 43], finetun-
ing [46], autoformalization [42] and context retrieval [45].
LLMs for Formal Verification Given the success of LLMs
in theorem proving, several recent efforts have explored
their application to formal verification. Early work focused
on generating entire proofs in a single pass, rather than pre-
dicting individual tactics [12, 27]. Selene [47] used seL4 [20]
as a benchmark for whole-proof generation and explored
context augmentation strategies by including related lem-
mas. In contrast, our approach adopts tactic-level prediction

and incorporates both related lemmas and related proofs as
contextual information. FVEL [25] also used tactic-level pre-
diction, but focused primarily on small programs. In contrast,
our work targets system software, and combines tactic-level
proof search with richer context selection.

Concurrent to our work, Rango [40] similarly applies LLM-
based proof search to software verification.While Rango uses
a finetuned small model with trial-and-error linear search on
CompCert, our work applies off-the-shelf LLMs with best-
first tree search on FSCQ. Our work focuses on the FSCQ
codebase, we compare the LLM generated proofs and original
manual proofs (§4.2) and analyze the failing caseswhen LLMs
cannot complete a proof (§4.3).

3 Best-First Proof Search for Coq
We introduce a system, inspired by GPT-f [35], that auto-
mates proof search in Coq by querying an LLM. To systemat-
ically explore the space of potential proofs, we employ a best-
first search algorithm, similar to the approach used by GPT-f
and other related works [34, 42, 45]. Utilizing Coq’s low-level
state transition machine interface [5] and SerAPI [13], we
built a custom Coq proof checker integrated with this search
algorithm.

The search iterates through a tree structure, starting with
the root goal, and operates in two steps:
• Selection. Select the goal with the highest score from
the set of unexpanded goals. The score is defined as the
cumulative log probability of the tactics used to reach that
goal from the root goal.

• Expansion. Query the model for possible next tactics
based on the selected goal. Mark the selected goal as ex-
panded and independently append each predicted tactic
to it. Each valid tactic either completes the selected goal
or creates a subgoal as its child.
A tactic is considered invalid if it: (1) is rejected by Coq, (2)

results in a proof state that has already been encountered in
the search tree, or (3) takes longer than 5 seconds to execute.
To manage computational overhead, we also impose a limit
on the number of model queries. The search succeeds if, at
any point, the proof is completed (i.e. all goals are proven);
it fails if no unexpanded goal remain or if the query limit is
reached before the proof is complete.
Our approach diverges from GPT-f in two main ways.

First, GPT-f limits the model’s context to the active proof
goals, which is insufficient for a large codebase like FSCQ,
where components are highly interdependent. To address
this problem, we provide the model with an extended proof
context that may include definitions, theorem statements,
and proof steps in the current file and imported files up to
(but not beyond) the active proof goals.

35

Can Large Language Models Verify System Software? A Case Study Using FSCQ as a Benchmark. HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

total
100%

8-15
10%

16-31
19%

32-63
32%

64-127
22%

128-255
11%

256-511
3%

512-1023
2%

1024-2047
1%

Human Proof Length (Range of # Tokens) and Fraction of Test Set (%)

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 th

eo
re

m
s

74

44

22 7 1
183

75

62
39 7140

59

48
29 4

326

112

125

73
14 2

GPT-4o mini
GPT-4o mini (w/ hints)
Gemini 1.5 Flash
Gemini 1.5 Flash (w/ hints)

(a) Using Small LLMs (GPT-4o mini, Gemini 1.5 Flash) on 50% of the FSCQ codebase.

total
100%

8-15
7%

16-31
19%

32-63
33%

64-127
25%

128-255
10%

256-511
5%

512-1023
1%

1024-2047
0%

Human Proof Length (Range of # Tokens) and Fraction of Test Set (%)

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 th

eo
re

m
s

59

10

21

19
9

77

12

26

29

9
1

24

9

10

4 1

52

9
22

16

4 122

9

10

3

54

11

22

16
5

GPT-4o
GPT-4o (w/ hints)
Gemini 1.5 Pro
Gemini 1.5 Pro (w/ hints)
Gemini 1.5 Pro (128k context)
Gemini 1.5 Pro (128k context, w/ hints)

(b) Using Large LLMs (GPT-4o, Gemini 1.5 Pro) on 5% of the FSCQ codebase.

Figure 1: Proof coverage analysis.

Second, because of cost constraints, we rely on pre-trained,
off-the-shelf LLMs to estimate the likelihood of proof comple-
tion, rather than training or fine-tuning a dedicated model.
Training a specialized LLM involves significant effort and
remains a promising direction for future work.

4 Results
Model choices. We evaluate four off-the-shelf LLMs: GPT-
4o mini, GPT-4o, Gemini 1.5 Flash, and Gemini 1.5 Pro, se-
lected for their strong performance on established chatbot
evaluation benchmarks [1]. To study the effect of context
length on proof generation, we evaluate Gemini 1.5 Pro with
both a 1M-token context window and a truncated 128k-token
context window. For all other models we evaluate, we use
their default context window.
Best-first search’s hyperparameters. We set the search
width to 8, as Gemini currently supports a maximum of
8 outputs per query. The model query limit is set to 128,
consistent with the configuration used in GPT-f.
Prompt design. We test two prompt settings: a vanilla
setting and a hint setting. In the vanilla setting, the model
receives a proof context containing definitions and theorem
statements only, but no proof steps. However, we hypoth-
esize that FSCQ proofs might share recurring patterns or

structural similarities that could guide tactic generation. To
explore this, the hint setting augments the proof context
with human proofs taken from 50% of the theorems, which
are selected at random and remain consistent across all ex-
periments. For each step, we include the preceding proof
context in its file, as well as those from imported files. When
the prompt exceeds the model’s context window, we retain
the portions closer to the next tactic.
Data. Our experiments use theorems from the FSCQ code-
base. For smaller models (GPT-4o mini, Gemini 1.5 Flash),
we evaluate their performance on all theorems not selected
for the hint setting. For larger models, (GPT-4o, Gemini 1.5
Pro), we reduce the evaluation data to 10% of the theorems
not selected for the hint setting, representing 5% of all FSCQ
theorems. This sampling is due to budget constraints. Note
that all theorems tested for larger models are also in the test
set for smaller models.

4.1 Proof Coverage
Figure 1 illustrates the fraction of theorems that each LLM
can solve directly, grouped by the length (in tokens) of their
human proofs in FSCQ. Notably, the hinted GPT-4o model
proves 38% of all FSCQ theorems and 57% of simpler theo-
rems (those with human proofs under 64 tokens)—a category
that constitutes about 60% of all FSCQ theorems.

36

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Qin et al.

induction l1; simpl; intros.
- apply incl_nil.
- intuition.
 apply incl_cons.
 + specialize (H a).
 simpl in *. intuition.
 exfalso; eauto.
 + eapply IHl1; eauto.
 eapply incl_cons_inv;
 eauto.

intros T l1 l2 a H H0.
unfold incl in *.
intros x H1.
specialize (H x H1).
simpl in H.
destruct H as [H | H].
- exfalso; apply H0;
 subst; assumption.
- assumption.

Lemma incl_tl_inv : forall T l1 l2 (a : T),
incl l1 (a :: l2) -> ~ In a l1 -> incl l1 l2.

Original GPT-4o
unfold ndata_log, padded_log,
setlen, roundup; intros.
rewrite firstn_oob by auto.
repeat rewrite map_app.
rewrite repeat_map; simpl.
rewrite nonzero_addrs_app.
setoid_rewrite <- app_nil_l at 3.
rewrite nonzero_addrs_app_zeros;
auto.

intros a.
unfold ndata_log.
rewrite
nonzero_addrs_padded_log.
reflexivity.

Lemma ndata_log_padded_log : forall a,
ndata_log (padded_log a) = ndata_log a.

Original GPT-4o

intros. destruct t.
constructor. inversion H.
rewrite map_cons in H2.
apply Forall_inv in H2.
simpl in H2. inversion H2.
constructor; eauto.

intros.
inversion H;
auto.
inversion H2;
subst; auto.

Lemma tree_name_distinct_head:
forall inum name l t, tree_names_distinct
(TreeDir inum ((name, t)::l)) ->
tree_names_distinct t.

Original Gemini 1.5 Pro

[Case A] Comparison for lemma incl_tl_inv: Removing an element
from the superset not in the subset preserves the subset relation.

[Case B] Comparison for lemma ndata_log_padded_log: The number of
entries in a log will not change if padded with NULLs.

[Case C] Comparison for tree_name_distinct_head:
Uniqueness of names in a directory implies
uniqueness of names in its first sub-directory.

70 Tokens 67 Tokens 78 Tokens 29 Tokens 55 Tokens 24 Tokens

Figure 2: Selected examples comparing human proofs with LLM-generated proofs.

Model Utilities CHL File System

GPT-4o 40.0% / 36.0% 43.3% / 32.3% 15.6% / 24.4%
GPT-4o (w/ hints) 57.8% / 46.6% 51.7% / 42.2% 20.8% / 32.0%

Table 1: Proof coverage across different categories of
theorems (actual / expected based on token length).

Although LLMs excel at shorter proofs, their coverage
degrades considerably when confronted with theorems re-
quiring longer proofs. No model has succeeded in proving
theorems whose human proofs exceed 512 tokens.

Figure 1 shows that when models are prompted with hints
(ie. proofs of previous theorems), the proof coverage im-
proves substantially. One might expect a larger context win-
dow to yield even better results. Surprisingly, as Figure 1b
shows, reducing the Gemini 1.5 Pro context window from
1M tokens to 128k tokens does not improve its coverage.
This observation suggests that simply feeding the model
more context is not necessarily optimal, and better context-
selection strategies may be needed moving forward.

To provide a different perspective based on FSCQ’s verifi-
cation structure, we investigate proof coverage for different
categories: Utilities, which are helper lemmas generally use-
ful in Coq (e.g. ListUtils.v); CHL, representing lemmas in
Crash Hoare Logic; and File System, which refers to lemmas
in the file system components of FSCQ. For each category, we
compute two proof coverage values. The actual coverage is
based on the LLM’s ability to prove the lemmas in a category.
The expected coverage captures category-agnostic behavior
based on the lengths of the human proofs; for each lemma
in a category, we use the proof coverage result from Figure 1
for the bin of human proof lengths that the lemma falls in.

Table 1 presents this analysis using GPT-4o. These results
suggest that the model exceeds expected coverage in the Util-
ities and CHL categories but performs worse than expected
in the File System category. Notably, with hints, the model

proves over half of the CHL lemmas, indicating its under-
standing of CHL gained from the provided proof context.
This demonstrates that the model can adapt to custom proof
systems like CHL, which suggests that the model may be
able to handle specialized verification tasks with appropriate
context. In contrast, we observe that LLMs perform worse
than expected for the File System category; we suspect this is
from an increase in dependent theorems and custom tactics,
but further analysis is needed to understand this difference.
Additionally, when using LLMs to augment human proof ef-
fort, these results highlight the potential utility in delegating
different classes of lemmas to LLMs.

4.2 Is it Reasoning or Memorization?
Case Studies Because the FSCQ codebase was publicly
available on GitHub before the tested models’ knowledge
cutoffs, one might worry that the generated proofs reflect
memorization rather than genuine verification capability. To
address this concern, we manually compared several LLM-
generated proofs with their human-written counterparts to
confirm that the generated proofs are not mere duplicates. In
fact, in some cases, LLM-generated proofs are more concise
than their human-written versions.
Figure 2 presents three such examples. In Case A, the

human-written proof uses induction unnecessarily, while
the LLM (GPT-4o) bypasses induction entirely. In Case B,
the human proof expands the reasoning through multiple
rewrites, whereas the LLM (GPT-4o) simplifies it by applying
a single lemma. Finally, in Case C, the human proof involves
redundant applications of lemmas, while the LLM (Gemini
1.5 Pro) inverts both hypotheses and directly uses subst and
auto. These examples show that the human proofs tend to
rely on additional lemmas, sometimes unnecessarily, while
LLMs leverage Coq’s default tactics more efficiently.
Proof similarity More broadly, we quantified the similar-
ity between LLM-generated proofs and human proofs using
normalized Levenshtein distance (ranging from 0 to 1, where

37

Can Large Language Models Verify System Software? A Case Study Using FSCQ as a Benchmark. HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

Model Proved
Failed Qualitative Metrics

Stuck Fuelout Similarity Length

GPT-4o mini 4.2%→ 9.1% 94.8%→ 90.0% 1.0%→ 0.9% 0.460 → 0.582 97.4%→ 113.7%
GPT-4o 29.2%→ 38.1% 65.8% → 57.9% 5.0% → 4.0% 0.546→ 0.605 101.6%→ 100.7%
Gemini 1.5 Flash 7.1% → 16.3% 91.7% → 81.7% 1.2%→ 2.0% 0.529 → 0.598 100.6% → 98.7%
Gemini 1.5 Pro 11.9%→ 25.7% 88.1%→ 73.3% 0.0% → 1.0% 0.565→ 0.660 98.7% → 92.5%
Gemini 1.5 Pro (128k context) 10.9%→ 26.7% 89.1%→ 72.8% 0.0% → 0.5% 0.579→ 0.683 111.2%→ 109.1%

Table 2: Percentage of proved lemmas and failed lemmas (by failure mode). Additionally, qualitative metrics for
average similarity and length of generated proofs relative to the corresponding human proofs. Each result is
shown without hints → with hints.

1 denotes an exact match and 0 indicates complete dissim-
ilarity). As Table 2 shows, the average similarity typically
remains below 0.6, with a maximum of 0.683, indicating that
LLM-generated proofs are not replicas memorized verbatim.
Note that randomly sampled proofs from FSCQ (with com-
pletely different proof goals) have an average similarity of
0.360.
Proof length We also compared the average length (in
tokens) of the generated proofs to that of the human proofs.
As Table 2 shows, the average length of the generated proofs
is similar to that of the human proofs.

4.3 When and Why do LLMs Fail?
Table 2 presents the distribution of the two failure modes
in our system: "stuck" refers to cases where no more unex-
panded goals remain, while "fuelout" indicates that the model
query limit has been reached. Notably, "fuelout" events are
much less frequent than "stuck" events, suggesting that an
increase to the query limit alone is unlikely to yield signifi-
cant improvements. Instead, the model’s inherent reasoning
capability appears to be a more critical factor limiting proof
coverage.
Context selection In some cases, the LLMs struggle to
prove very simple theorems, even when they could be re-
solved by applying a nearby lemma.We suspect this difficulty
arises because the lengthy prompts contain many potential
lemmas, making it challenging for the LLMs to identify the
relevant ones. As a result, the models often attempt to recon-
struct the proof from scratch, which is significantly more dif-
ficult. To confirm this intuition, wemanually crafted prompts
for specific failed theorems (those with human proofs un-
der 16 tokens). For each selected theorem, we examined its
dependencies and included only the necessary definitions,
lemmas, and tactics in the prompt. With this reduced context,
the LLMs were able to successfully complete the proofs.

Reasoningmodels Recent developments in reasoning mod-
els, such as OpenAI’s o1 variants, have demonstrated re-
markable performance on mathematical problem-solving
tasks [31]. These models were not included in our experi-
ments because they currently do not provide the log proba-
bilities required for best-first search. Instead, we attempted
whole-proof generation for selected theorems using o1 vari-
ants, which highlighted several challenges when applying
these reasoning models to system software verification:
• Lack of interaction with the proof assistant. Current
reasoning models, which operate on natural language,
struggle when the problem and proof are formalized in a
strict formal language like Coq. Specifically, these models
seem to lack awareness of the proof progress during inter-
mediate steps. For example, the models may incorrectly
assume that a subgoal is simple enough to be closed by
built-in automation (e.g. auto) when it actually requires
several additional steps. Addressing these errors requires
at least several rounds of human interaction, which is less
efficient and less automated than best-first search.

• High token usage and long inference times. The inter-
nal reasoning process of these models typically involves
iterative generation and feedback, which increases both
token usage and inference time. This makes reasoning
models less practical for tasks that involve long contexts.

5 Discussions
Improving search and reasoning algorithms. In de-
signing our tool, we chose to use best-first search, a strat-
egy which has been well-explored in prior work. However,
there are many other search strategies to consider, such as
Monte Carlo Tree Search [14], as well as a range of prompt-
ing techniques, such as Chain-of-Thought [41] and Self-
Reflection [18]. We have seen newer LLMs incorporate rea-
soning, such as o1 [31], which could enable proof strategies

38

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Qin et al.

beyond tactic-by-tactic generation. It remains an open re-
search problem to continue exploring these alternate algo-
rithms.
Off-the-shelf versus fine-tuned LLMs. Off-the-shelf LLMs
are trained on a broad dataset sourced from the internet,
which primarily consists of text unrelated to system software
verification proofs (though those proofs may be a subset).
Training LLMs on domain-specific data, or fine-tuning off-
the-shelf LLMs on such data, could significantly improve
their success rate in completing proofs [4, 34, 35, 42, 45].
LLMs augmenting, not replacing, human proof effort.
LLMs also have the potential to augment developers in writ-
ing proofs. We saw that hints, derived from human effort
in proving other theorems, improved the proof coverage
of LLMs. We also observed that LLM performance varies
across different categories of theorems. While our work ex-
plores one approach to augmenting human proof effort, other
paradigms remain to be explored; for instance, LLMs might
assist by completing partial proofs or suggesting next steps.
Future usability studies will be valuable in understanding
how to best integrate LLM into developer workflows.
Improving context retrieval. As we have shown in §4,
context selection plays a crucial role in improving LLMs’
ability to complete proofs. Our evaluation used a simple
strategy—randomly sampling 50% of the available proofs—to
supply additional context. While this broad inclusion of in-
formation proved beneficial, prior work has shown that ex-
cessive context can actually degrade model performance [26].
Investigating methods to retrieve more relevant and targeted
context may significantly enhance LLM proof generation
capabilities.
Constructing intermediate lemmas. In our study, we
only invoke LLMs to generate proofs for existing theorem
and lemma statements. However, a challenging aspect of
verification involves the development of useful intermediate
lemmas to break down theorems. We believe recent work on
autoformalization [42] and induction invariant synthesis [8,
32, 33] are promising, but further research is needed.
Efficacy for different types of theorem provers. Some
recent work has investigated the integration of LLMs with
automated theorem provers that use SMT solvers, such as
Dafny and Verus [28, 44]. These tools differ in how proofs are
constructed and in the feedback they provide to the user. In
Coq, the proof goals are clearly displayed and updated with
each tactic, making it easy to understand progress or identify
failure. In contrast, intermediate goals in Verus are not clear,
including the effects of additional assert statements beyond
whether the assertion failed (or not). Currently, there is no
benchmark that allows us to compare the efficacy of LLMs
across these different types of theorem provers, (particularly

in the context of large-scale software systems). It remains
an open research question which of these environments is
more amenable to LLMs.
What is the metric to demonstrate that the LLM is not
merely memorizing and paraphrasing existing proofs?
We use normalized Levenshtein distance to measure the simi-
larity of LLM generated proofs and the original FSCQ proofs.
However, LLMs are excellent at paraphrasing: their output
may be a paraphrased version of their memorized proofs,
and normalized Levenshtein distance cannot capture the
similarity between paraphrased proofs. Ideally, the true test
would involve evaluating LLMs on entirely unseen proofs;
however, in the context of existing verified systems, this
means we need to pre-train LLMs from scratch to make sure
it has never seen the manual proofs before, preventing the
use of all off-the-shelf LLMs (or their fine-tuned versions).
Currently, to the best of our knowledge, all the existing LLM-
for-proof works [40, 47] demonstrate capabilities on existing
systems that already have manual proofs. What the appro-
priate evaluation methodology is for off-the-shelf LLMs or
their fine-tuned versions in proof synthesis remains an open
question.

6 Conclusion
Using LLMs to generate verification proofs is a promising
approach to reduce the human effort required in formal verifi-
cation. Our results show that, with appropriate proof context
and a straightforward best-first tree search, LLMs achieve
a proof coverage of 38% for theorems sampled from FSCQ.
Moreover, for simpler theorems—those where human proofs
used fewer than 64 tokens—LLMs achieve a proof coverage
exceeding 57%. Our results also identify a few key areas
for improving proof coverage, particularly for large-scale
software systems, including better context construction, im-
proved reasoning algorithms, and using proof steps from
similar theorems as hints.
Our code, along with all the proofs generated, is open-

sourced at https://github.com/QDelta/LLM-for-FSCQ.

Acknowledgment
We thank the anonymous reviewers for their insightful feed-
back. Our work is partially supported by NSF grants 2238665
and 2402696, as well as by gifts from Amazon, Google, and
Meta.

39

https://github.com/QDelta/LLM-for-FSCQ

Can Large Language Models Verify System Software? A Case Study Using FSCQ as a Benchmark. HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

References
[1] 2025. Chatbot Arena (formerly LMSYS) Free AI Chat to Compare & Test

Best AI Chatbots. https://lmarena.ai/
[2] 2025. Cursor - The AI code editor. https://www.cursor.com/
[3] Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W

Ayers, Dragomir Radev, and Jeremy Avigad. 2025. ProofNet: Autofor-
malizing and Formally Proving Undergraduate-Level Mathematics. In
Conference on Neural Information Processing Systems (NeurIPS).

[4] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos San-
tos, Stephen McAleer, Albert Q Jiang, Jia Deng, Stella Biderman, and
Sean Welleck. 2023. Llemma: An Open Language Model for Mathe-
matics. In International Conference on Learning Representations (ICLR).

[5] Bruno Barras, Carst Tankink, and Enrico Tassi. 2015. Asynchronous
Processing of CoqDocuments: From the Kernel up to the User Interface.
In International Conference on Interactive Theorem Proving (ITP).

[6] Can Cebeci, Yonghao Zou, Diyu Zhou, George Candea, and Clément
Pit-Claudel. 2024. Practical Verification of System-Software Compo-
nents Written in Standard C. In ACM Symposium on Operating Systems
Principles (SOSP).

[7] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans Kaashoek, and
Nickolai Zeldovich. 2022. Verifying the DaisyNFS Concurrent and
Crash-Safe File System with Sequential Reasoning. In Symposium on
Operating Systems Design and Implementation (OSDI).

[8] Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhoury, Madanlal
Musuvathi, Akash Lal, Aseem Rastogi, Aditya Senthilnathan, Rahul
Sharma, and Nikhil Swamy. 2023. Ranking LLM-Generated Loop
Invariants for Program Verification. In Empirical Methods in Natural
Language Processing (EMNLP).

[9] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
undefinedleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2017. Verifying a High-Performance Crash-Safe File System
Using a Tree Specification. In ACM Symposium on Operating Systems
Principles (SOSP).

[10] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for
Certifying the FSCQ File System. In ACM Symposium on Operating
Systems Principles (SOSP).

[11] Papers With Code. 2025. spider Benchmark (Text-To-SQL). https:
//paperswithcode.com/sota/text-to-sql-on-spider

[12] Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Bal-
dur: Whole-Proof Generation and Repair with Large Language Models.
In ACM International Conference on the Foundations of Software Engi-
neering (FSE).

[13] Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-
Centric Serialization for Coq. HAL preprint HAL:01384408 (2016).

[14] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and
Michael Norrish. 2021. TacticToe: Learning to Prove with Tactics.
Journal of Automated Reasoning 65, 2 (2021).

[15] GitHub. 2025. GitHub Copilot · Your AI pair programmer. https:
//github.com/features/copilot

[16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS Kernels. In Sympo-
sium on Operating Systems Design and Implementation (OSDI).

[17] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In ACM Symposium on
Operating Systems Principles (SOSP).

[18] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale
Fung. 2023. Towards Mitigating LLM Hallucination Via Self Reflection.
In Empirical Methods in Natural Language Processing (EMNLP).

[19] John Arnold Kalman. 2001. Automated Reasoning with Otter. Rinton
Press Princeton NJ.

[20] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: Formal Verification of an OS Kernel. In ACM
Symposium on Operating Systems Principles (SOSP).

[21] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Prov-
ing and Vampire. In International Conference on Computer Aided Verifi-
cation (CAV).

[22] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee
Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed,
Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Oded Padon, and Bryan
Parno. 2024. Verus: A Practical Foundation for Systems Verification.
In ACM Symposium on Operating Systems Principles (SOSP).

[23] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier
for Functional Correctness. In Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR).

[24] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (2009).

[25] Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao
Lu, Zhengying Liu, Linqi Song, and Xiaodan Liang. 2024. FVEL: Inter-
active Formal Verification Environment with Large Language Models
via Theorem Proving. In Conference on Neural Information Processing
Systems (NeurIPS).

[26] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele
Bevilacqua, Fabio Petroni, and Percy Liang. 2024. Lost in the Mid-
dle: How Language Models Use Long Contexts. Transactions of the
Association for Computational Linguistics 12 (2024).

[27] Minghai Lu, Benjamin Delaware, and Tianyi Zhang. 2024. Proof Au-
tomation with Large Language Models. In IEEE/ACM International
Conference on Automated Software Engineering (ASE).

[28] Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, and James Noble.
2024. Towards AI-assisted Synthesis of Verified Dafny Methods. In
ACM International Conference on the Foundations of Software Engineer-
ing (FSE).

[29] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling Symbolic Evaluation for Auto-
mated Verification of Systems Code with Serval. In ACM Symposium
on Operating Systems Principles (SOSP).

[30] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-
Button Verification of an OS Kernel. In ACM Symposium on Operating
Systems Principles (SOSP).

[31] OpenAI. 2025. Learning to reason with LLMs. https://openai.com/
index/learning-to-reason-with-llms/

[32] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2023. Can Large Language Models Reason about Program Invari-
ants?. In International Conference on Machine Learning (ICML).

[33] Muhammad AA Pirzada, Giles Reger, Ahmed Bhayat, and Lucas C
Cordeiro. 2024. LLM-Generated Invariants for Bounded Model Check-
ing without Loop Unrolling. In IEEE/ACM International Conference on
Automated Software Engineering (ASE).

[34] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor
Babuschkin, and Ilya Sutskever. 2023. Formal Mathematics Statement
Curriculum Learning. In Conference on Neural Information Processing
Systems (NeurIPS).

[35] Stanislas Polu and Ilya Sutskever. 2020. Generative LanguageModeling
for Automated Theorem Proving. arXiv preprint arXiv:2009.03393
(2020).

[36] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao
Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y. Wu, and Guo Daya.

40

https://lmarena.ai/
https://www.cursor.com/
https://paperswithcode.com/sota/text-to-sql-on-spider
https://paperswithcode.com/sota/text-to-sql-on-spider
https://github.com/features/copilot
https://github.com/features/copilot
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Qin et al.

2024. DeepSeekMath: Pushing the Limits of Mathematical Reasoning
in Open Language Models. arXiv preprint arXiv:2402.03300 (2024).

[37] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In Symposium on Operating Systems Design and Implementation (OSDI).

[38] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindo-
houe, and Santiago Zanella-Béguelin. 2016. Dependent Types and
Multi-Monadic Effects in F*. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL).

[39] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. 2021. Formal Verification of a Multiprocessor Hypervisor
on Arm Relaxed Memory Hardware. In ACM Symposium on Operating
Systems Principles (SOSP).

[40] Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex
Sanchez-Stern, Yuriy Brun, João F. Ferreira, Sorin Lerner, and Emily
First. 2025. Rango: Adaptive Retrieval-Augmented Proving for Auto-
mated Software Verification. In International Conference on Software
Engineering (ICSE).

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In Conference on
Neural Information Processing Systems (NeurIPS).

[42] Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles
Staats, Mateja Jamnik, and Christian Szegedy. 2022. Autoformalization
with Large Language Models. In Conference on Neural Information
Processing Systems (NeurIPS).

[43] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Cheng-
peng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin,
Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren,
and Zhenru Zhang. 2024. Qwen2.5-Math Technical Report: Toward
Mathematical Expert Model via Self-Improvement. arXiv preprint
arXiv:2409.12122 (2024).

[44] Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Wei-
dong Cui, Yeyun Gong, Chris Hawblitzel, Shuvendu Lahiri, Jacob R.
Lorch, Shuai Lu, Fan Yang, Ziqiao Zhou, and Shan Lu. 2025. AutoVerus:
Automated Proof Generation for Rust Code. In International Conference
on Learning Representations (ICLR).

[45] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song,
Shixing Yu, Saad Godil, Ryan J Prenger, and Animashree Anandkumar.
2024. LeanDojo: Theorem Proving with Retrieval-Augmented Lan-
guage Models. In Conference on Neural Information Processing Systems
(NeurIPS).

[46] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu
Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu.
2024. MetaMath: Bootstrap Your Own Mathematical Questions for
Large Language Models. In International Conference on Learning Rep-
resentations (ICLR).

[47] Lichen Zhang, Shuai Lu, and Nan Duan. 2024. Selene: Pioneering
Automated Proof in Software Verification. In Annual Meeting of the
Association for Computational Linguistics (ACL).

[48] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. 2022. miniF2F:
A Cross-System Benchmark for Formal Olympiad-Level Mathematics.
In International Conference on Learning Representations (ICLR).

[49] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo
Chen. 2019. Using Concurrent Relational Logic with Helpers for
Verifying the AtomFS File System. In ACM Symposium on Operating
Systems Principles (SOSP).

41

	Abstract
	1 Introduction
	2 Related Work
	3 Best-First Proof Search for Coq
	4 Results
	4.1 Proof Coverage
	4.2 Is it Reasoning or Memorization?
	4.3 When and Why do LLMs Fail?

	5 Discussions
	6 Conclusion
	References

