Drowsy Power
Management

Matthew Lentz James Litton Bobby Bhattacharjee
University of Maryland

be O«\
18 56
’9\

Q
ARYLAS

Background Energy Consumption

Mobile devices consume energy
without human-interaction

Many (periodic) short-lived events executed:

Fetch Remote Data

Communicate with Nearby Device(s)
Receive Push Notification

Sample Sensor(s)

N

Power Consumption (m

800

600

400

200 [t

Power Trace with Events

) et

2 4 6
Time (seconds)

10

12

Power Consumption (m

800

600

400

200 [t

Power Trace with Events

Event = Pull data from remote server over WiFi

Event

) et

Event

6
Time (seconds)

10

12

Power Consumption (mW)

Power Management States

1200

—
o
o
o

800

600

400

200 it

Event

Time

- System in low-power state
~Memory retains contents

Off

Power Consumption (mW)

Power Management States

1200

—
o
o
o

800

600

400

200 it

On

Event

Time

- System in low-power state
~Memory retains contents

Off

Power Consumption (mW)

Power Management States

On

1200 -

Event

800 |
600 -

400 | System in low-power state

—_
o
o
o

~Memory retains contents
200 f

Time Oﬁ

Power Consumption (mW)

Power Management States

On

1200 -

Event

—_
o
o
o

WIiFi Controller

800 | Power-Save Mode
600 | ¥

400 - System in low-power state

~Memory retains contents
200 f

Time Oﬁ

Power Consumption (mW)

1200

—_
o
o
o

800

610]0)

400

200 it

Power Trace with Events

Time (seconds)

On On
I Suspend I
| Event Event
0] 2 4 g 1r0 112

Power Consumption (mW)

Power Trace with Events

On On

I Suspend I

1200 -

Event

—_
o
o
o

800 §
600
400

200

2 4 6 8 10 12
Time (seconds)

What Happens During a Wakeup?

e VI
E O'MMJ\J\ \4 RJJF\

c 80

2 H

E 600 L J

wn

(-

(@)

Bl v _
| | |
50 150 200

Power Consumption (mW)

What Happens During a Wakeup?

e
"L |
VI W

200 L
O { | | | J
0] 50 100 150 200

Interrupt (from RTC Alarm) Time (milliseconds)

Power Consumption (mW)

What Happens During a Wakeup?

1200 ~Suspend—0On

—
o
o
o

800

600

; uq LUJA«M W

| |
100 150 200
Interrupt (from RTC Alarm) Time (milliseconds)

400

200

Power Consumption (mW)

What Happens During a Wakeup?

1200 -Suspend—On Event

—
o
o
o

800

600

400

/ uq LMJ“«M Am

| |
100 150 200
Interrupt (from RTC Alarm) Time (milliseconds)

200

Power Consumption (mW)

What Happens During a Wakeup?

1200

1000

800

600

400

200

-Suspend—On Event

Objects held by applications and drivers
When all locks released, can enter Suspend

.

Interrupt (from RTC Alarm)

100 150 200
Time (milliseconds)

Power Consumption (mW)

What Happens During a Wakeup?

1200 -Suspend—On Event

—
o
o
o

800

600

400

/ uq LMJ“«M Am

| |
100 150 200
Interrupt (from RTC Alarm) Time (milliseconds)

200

Power Consumption (mW)

What Happens During a Wakeup?

1200 -Suspend—On Event On—Suspend

1000 [
800
600
400

200

0
0 50 100 150 200

Interrupt (from RTC Alarm) Time (milliseconds)

Power Consumption (mW)

What Happens During a Wakeup?

- Acquire wakelock

-~ Fetch update over WiFi
- Set future wakeup alarm
- Release wakelock

1200 -Suspend—On Event On—Suspend

1000 [
800
600
400

200

0
0 50 100 150 200

Interrupt (from RTC Alarm) Time (milliseconds)

Power Consumption (mW)

1200

—
-
-
o

800

600

400

200

Transitions are Inefficient

Transitions account for 75% of total energy consumption!

| | | |
-Suspend—On Event On—Suspend

0 50 100 150 200
Time (milliseconds)

Power Consumption (mW)

Transitions are Inefficient

Transitions account for 75% of total energy consumption!

| | I '
1200 -Suspend—On Event On—Suspend

1000 [

Transitions for Other Events
800

00 RTC Alarm (ALM) 85%

Bluetooth Connection (BT2) 32%

400 |- Push Notification (PSH) 89%
(SEN)

200 Sample Accelerometer (SEN) 23%

0 50 100 150 200
Time (milliseconds)

Power Consumption (mW)

1200

—
-
-
o

800

600

400

200

Transitions are Inefficient

Transitions account for 75% of total energy consumption!

| | | |
-Suspend—On Event On—Suspend

0 50 100 150 200
Time (milliseconds)

Power Consumption (mW)

On — Suspend

1200

1000

800

600

400

200

0 50 100 150 200
Time (milliseconds)

On — Suspend

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

@ Wait for interrupt

100
Time (milliseconds)

150

200

On — Suspend

@ Flush filesystem buffers
@ Freeze all tasks

3 Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

@ Wait for interrupt

100
Time (milliseconds)

150

200

Power Consumption (mW)

1200

-
o
o
o

800

600

400

200

Suspend — On

Power Consumption (mW)

1200

1000

800

600

400

200

Suspend — On

@ Enable CPUs
@ Resume all devices
® Thaw all tasks

Power Consumption (mW)

1200

1000

800

600

400

200

Suspend — On

@ Enable CPUs
2) Resume all devices
3) Thaw all tasks

Drowsy Power Management

Wake up only what is necessary

Drowsy Power Management

Wake up only what is necessary

Necessary
for Pull Data:

Drowsy Power Management

Wake up only what is necessary

Necessa ry @ Application ﬁf System Services }

for PullData: | 79 Alarm Device & WiFi Device

Drowsy Power Management

Wake up only what is necessary

Necessa ry @ Application ﬁf System Services }

for PullData: | 79 Alarm Device & WiFi Device

USB Device Battery Monitoring Device
Unnecessary: Calendar App Power Reqgulator Devices
Bluetooth Device Power Requlators

Input Devices SD Card Device

Drowsy Power Management

Construct minimal “wake set” of tasks and devices

Drowsy Power Management

Construct m|n|mal “wake set” of tasks and devices

--

-»Smallest set that maintains correct behavior

Drowsy Power Management

Construct m|n|mal “wake set” of tasks and devices

--

;---»Smallest set that maintains correct behavior

~»Expand on-demand as event progresses

Drowsy Power Management

Construct m|n|mal “wake set” of tasks and devices

--

;---»Smallest set that maintains correct behavior

~»Expand on-demand as event progresses

Constraint: No modifications to user-space

Transitions To/From Drowsy

Thaw all tasks @)
Resume all devices @
Enable CPUs @

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Transitions To/From Drowsy

Thaw previously running tasks @
Resumeatbdevices @
Enable CPUs @

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Transitions To/From Drowsy

On CPU or Run Queue
s @ Flush filesystem buffers

@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Enable CPUs @

Transitions To/From Drowsy

{ <Prev. Running Tasks> }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @

Transitions To/From Drowsy

Wake Set =
{ <Prev. Running Tasks> }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @

Transitions To/From Drowsy

WELGISIS &
{ <Prev. Running Tasks>, Task, Device, ... }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @

Transitions To/From Drowsy

WELGISIS &
{ <Prev. Running Tasks>, Task, Device, ... }

@ Flush filesystem buffers

@ Freeze tasks in wake set

@ Suspend devices in wake set
@ Disable non-boot CPUs

® Set RAM to self-refresh

Thaw previously running tasks @
Resumeatbdevices @
Enable CPUs @

Constructing the Wake Set

Task States: JRun(cPu) B Run(1/0) B Run (Device 1/0)

Task A

<+— open() named pipe

Time

<+— read() from pipe

<+— joctl() command to device

Constructing the Wake Set

Task States: JRun(cPU) B Run(/0) P Run (Device 1/0) # Blocked

Task A

<+— open() named pipe

Time

<+— read() from pipe

<+— Blocks waiting on
condition to be met

Constructing the Wake Set

Task States: JRun(cPU) B Run(/0) P Run (Device 1/0) # Blocked

Task B Task A

<+— open() named pipe

<+— read() from pipe

<+— Blocks waiting on
condition to be met

Sansﬁes

condltlon

write() —»
to pipe

<+— joctl() command to device

Time

Constructing the Wake Set

Task States: JRun(cPU) B Run(/0) P Run (Device 1/0) # Blocked

Task B Task A

<+— open() named pipe

Time

<+— read() from pipe

<+— Blocks waiting on
condition to be met

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Transition to Suspend
/ (ALl wakelocks released)

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Transition to Suspend
/ (ALl wakelocks released)

<+— Transition to Drowsy

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Wake Set =

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Wake Set =
<+— { Task B }

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Wake Set =

<«— { Task B }
<«— { Task B, Task A }

Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [Frozen

Task B Task A

Time

Wake Set =

<«— { Task B }
<«— { Task B, Task A }

<«— { Task B, Task A, Device }

Drowsy Wake Set: Pull Data

> 4 .
(D Task Device CO IRQ / Wakeup ,~~ Chained IRQ

Drowsy Wake Set: Pull Data

AP
D Task Device D IRQ / Wakeup ,~~ Chained IRQ

: wenss_wlan.0 :
(log_main } wlang

Binder_3

Compiler
b flush-0:17
flush-179:0

cision

ns 13 ms 26 ms 41 ms 91 ms 98 ms

ume Suspend
ning Tasks) (Sync Filesystem Buffers)

ActivityManager

Drowsy Wake Set: Pull Data

> 4 .
(D Task Device CO IRQ / Wakeup ,~~ Chained IRQ

(wenss_wlan.0)

T

(lRQ 48 ‘(IRQ 362)

l

(platform) (msm- SSbI 0) (rtc pm8xxx) (Benchmark) (Worker)<:m
(msmgplo] (pm8921 core] rtio) (ServerThread) Blnder 3
(atam) (PowerManager) _binder m
Time (ms) (/dev/alarm)—V(AIarmManager)—V(Act|V|tyManager)—>(B|nder 1 (Blnder 1) (Blnder 2)
| | | | | | >
0 ms 4 ms 6 ms 13 ms 26 ms 41 ms 91 ms 98 ms
Resume Suspend
(Thaw Running Tasks) (Sync Filesystem Buffers)

15 tasks thawed & 16 devices resumed

Implementation

Implemented Drowsy within Android kernel

Platform: Google Nexus 4 (“Mako”)

Version: 4.2.2 (Fork of Linux 3.4)

SLOC: ~4,600

Instrumenting Android

For determining when to add tasks/devices to wake set

FS Calls (file_operations)
Sockets (net_device_ops) / Instrumented by Drowsy
Attributes (device_attributes)
MMIO (mmap)

Q) Devices

© B A g = R R g
c % ’ \I
o A IRQs .
3 AT ic_handlle_ir :
& ©1 | Drivers | Jereric-nandieia f Hardware |.
E O 1 :
%) > i

LU, () i i
O QO My /I 4
o l

— S ——— 5

Wait Queues
(try_to_wake_up)

Instrumenting Android

For determining when to add tasks/devices to wake set

FS Calls (file_operations

o) - _0ps)
Attributes (device_attributes)
MMIO (mmap)

/ Instrumented by Drowsy

Devices
IRQs

Drivers | 9eneric_handle_irq | Hardware

Device Classes
‘g 'I""i'~

&

IPC (ashmem, signals)
&

Wait Queues
(try_to_wake_up)

Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:

.open = &drv_open
Tasks .regd = &drv_read
.wWrite = &drv_write

Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:

.open = &drv_open

Tasks .regd = &drv_read |
.write = &drowsy_write
.write_impl = &drv_write

Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:
.open = &drv_open
Tasks .regd = &drv_read |
.write = &drowsy_write
.write_impl = &drv_write

int drowsy_write(File *f, ..)

. Device *d = fileToDevice(f)
if(d»state == Suspended)
. resumeDevice(d)

f>f_ops.write_impl(f, ..)

Evaluation: Benchmarking

—0n
—Drowsy

On—

Drowsy— Suspend Suspend

Release Acquire
Wakelock Wakelock

Handle
I/O Event

ALM Set a future vvakeup alarm
BT2 Acceptincoming Bluetooth connection
PUL Fetch weather update (and set alarm)
PSH Receive incoming push notification
SEN Sample the accelerometer (and set alarm)

Evaluation: Measurement

Function
Generator

IPhone = VShunt/ RShunt Time

Evaluation: Measurement

Function
Generator

IPhone = VShunt/ RShunt Time

Evaluation: Measurement

Function
Generator
>

IPhone = VShunt/ RShunt Time

Evaluation: Measurement

LED Toggled On
(Software Timestamp)

°
o)]
+ - < |
Function >°-
Generator]/
§1MQ = <

Time

|Phone — VShunt/ RShunt

Improvement: Wakeup Events

Bl Android Bl Android Plus [Android Plus (1 Core, Powersave)
Bl Drowsy [IDrowsy (1 Core, Powersave)

ALM

BT2

PUL

PSH

SEN

6X 5Xx 4x 3x 2x 1X Ix 2x 3x 4x 5BXx 6X
Time Speedup Energy Efficiency

Improvement: Wakeup Events

Bl Android Bl Android Plus [Android Plus (1 Core, Powersave)
Bl Drowsy [IDrowsy (1 Core, Powersave)

ALM

~ Drowsy is 1.5-5x as
~energy efficient

BT2

PUL

PSH

SEN

| L I | | L I L | | I |
6X 5Xx 4x 3x 2x 1X Ix 2x 3x 4x 5BXx 6X
Time Speedup Energy Efficiency

Improvement: Wakeup Events

Bl Android Bl Android Plus [Android Plus (1 Core, Powersave)
Bl Drowsy [IDrowsy (1 Core, Powersave)

ALM

~ Drowsy is 1.5-5x as
~energy efficient

BT2

| ; PUL p—
cpuidle entered deep '
idle states more often

in the Drowsy state

6x 5x 4x 3x 2x 3x 4x 5x 6X
Time Speedup Energy Efficiency

Improvement: Wakeup Events

Bl Android Bl Android Plus [Android Plus (1 Core, Powersave)
Bl Drowsy [IDrowsy (1 Core, Powersave)

ALM

BT2

——

PSH

SEN
6Xx 5x 4x 3x 2x 1x 1Ix 2x 3x 4x 5x 6X
Time Speedup Energy Efficiency

Wakeup Cycle: Pull Data

Android
< 1200
E

= 1000
£ 800
£ 600
2

o 400
@)

s 200 |

0

Suspend—0On

<>

Event

o

50

On—Suspend

100
Time (milliseconds)

150

200

Wakeup Cycle: Pull Data

Android cvent

= 1200 «+ > On—Suspend

= 1000 (Suspend—0On

S

2 800

E 600}

2

o 400

@)

s 200 |

s oL -

A 0 50 100 150 200
Time (milliseconds)

Qrowsy Event & Wake Set

% 1200 < >D

= 1000 f rolvv >y

% 800 _Suspjend Suspend

=

3 600 - Drowsy

o 400

O .y

S 200 ‘\-

chz 0] | |

0 50 100 150 200
Time (milliseconds)

Wakeup Cycle: Pull Data

Android Event

% 1200 <« »> On—Suspend

= 1000 (Suspend—0On

2 800 -

S 600 f

S 400 -

@)

5 200

2 oL 2

o 0 0] 100 150 200
Time (milliseconds)

QrOWSy Event & Wake Set

S 1200 < "5

€ oo | i

S 800 _Suspiend Suspend R

% 00 |- Drowsy /WIFI Tail Energy

& 400

@)

5 200

0 50 100 150 200
Time (milliseconds)

Improvement: Battery Life

Qg

Drowsy Battery Life Improvement (%)

3S 95S 10s 30s im 3m 5m
Interval Between Events (Logscale)

Improvement: Battery Life

Drowsy Battery Life Improvement (%)

100

80

60

40

20

SEN

PSH
i ALM e—

PUL re==—

BT? e

Converges to 0% as
AAA < the interval increases

3S 95S 10s 30s im 3m
Interval Between Events (Logscale)

Improvement: Battery Life

Drowsy Battery Life Improvement (%)

100

80

60

40

20

3S 5s 10s 30s im 3m

~N SEN o

I Benefits of Drowsy Ef,\HA —
aggregate across all II;L'Ij'Ié —

N applications on device @

Converges to 0% as
AAA < the interval increases

Interval Between Events (Logscale)

Summary

Existing power management not optimized for short-lived events

wakes up the minimal set of tasks and devices

Drowsy

is 1.5 - 5x as enerqy efficient for short-lived events

Source code is available at:

www.cs.umd.edu/projects/drowsy/

