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Background Energy Consumption

Mobile devices consume energy
without human-interaction

Many (periodic) short-lived events executed:

Fetch Remote Data

Communicate with Nearby Device(s)
Receive Push Notification

Sample Sensor(s)
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Power Consumption (mW)
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What Happens During a Wakeup?
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Power Consumption (mW)

What Happens During a Wakeup?
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Power Consumption (mW)

What Happens During a Wakeup?

- Acquire wakelock

-~ Fetch update over WiFi
- Set future wakeup alarm
- Release wakelock
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Power Consumption (mW)

Transitions are Inefficient

Transitions account for 75% of total energy consumption!
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On — Suspend

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

@ Wait for interrupt
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On — Suspend

@ Flush filesystem buffers
@ Freeze all tasks

3 Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

@ Wait for interrupt
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Power Consumption (mW)
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@ Enable CPUs
2) Resume all devices
3) Thaw all tasks



Drowsy Power Management

Wake up only what is necessary
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Drowsy Power Management

Wake up only what is necessary

Necessa ry @ Application ﬁf System Services }

for PullData: | 79 Alarm Device & WiFi Device

USB Device  Battery Monitoring Device
Unnecessary: Calendar App Power Reqgulator Devices
Bluetooth Device Power Requlators

Input Devices SD Card Device



Drowsy Power Management

Construct minimal “wake set” of tasks and devices
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Drowsy Power Management

Construct m|n|mal “wake set” of tasks and devices

------------------------------------------------------------------------------------

;---»Smallest set that maintains correct behavior

~»Expand on-demand as event progresses

Constraint: No modifications to user-space



Transitions To/From Drowsy

Thaw all tasks @)
Resume all devices @
Enable CPUs @

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh




Transitions To/From Drowsy

Thaw previously running tasks @
Resumeatbdevices @
Enable CPUs @

@ Flush filesystem buffers
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Transitions To/From Drowsy

On CPU or Run Queue
s @ Flush filesystem buffers

@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Enable CPUs @




Transitions To/From Drowsy

{ <Prev. Running Tasks> }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @




Transitions To/From Drowsy

Wake Set =
{ <Prev. Running Tasks> }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @




Transitions To/From Drowsy

WELGISIS &
{ <Prev. Running Tasks>, Task, Device, ... }

@ Flush filesystem buffers
@ Freeze all tasks

@ Suspend all devices

@ Disable non-boot CPUs
® Set RAM to self-refresh

Thaw previously running tasks @)
Resumeatbdevices @
Enable CPUs @




Transitions To/From Drowsy

WELGISIS &
{ <Prev. Running Tasks>, Task, Device, ... }

@ Flush filesystem buffers

@ Freeze tasks in wake set

@ Suspend devices in wake set
@ Disable non-boot CPUs

® Set RAM to self-refresh

Thaw previously running tasks @
Resumeatbdevices @
Enable CPUs @




Constructing the Wake Set

Task States: JRun(cPu) B Run(1/0) B Run (Device 1/0)

Task A

<+— open() named pipe

Time

<+— read() from pipe

<+— joctl() command to device
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Constructing the Wake Set

Task States: JRun(cPU) B Run(/0) P Run (Device 1/0) # Blocked

Task B Task A

<+— open() named pipe

<+— read() from pipe

<+— Blocks waiting on
condition to be met

Sansﬁes

condltlon

write() —»
to pipe

<+— joctl() command to device

Time




Constructing the Wake Set

Task States: JRun(cPU) B Run(/0) P Run (Device 1/0) # Blocked

Task B Task A

<+— open() named pipe

Time

<+— read() from pipe

<+— Blocks waiting on
condition to be met




Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [ Frozen
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Constructing the Wake Set
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Transition to Suspend
/ (ALl wakelocks released)




Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [ Frozen

Task B Task A

Time

Transition to Suspend
/ (ALl wakelocks released)

<+— Transition to Drowsy
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Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [ Frozen

Task B Task A

Time

Wake Set =
<+— { Task B }




Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [ Frozen

Task B Task A

Time

Wake Set =

<«— { Task B }
<«— { Task B, Task A }




Constructing the Wake Set

Task States: JJrun(cPU) B Run(/0) B Run (Device 1/0) M Blocked [ Frozen

Task B Task A

Time

Wake Set =

<«— { Task B }
<«— { Task B, Task A }

<«— { Task B, Task A, Device }
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Drowsy Wake Set: Pull Data

AP
D Task Device D IRQ / Wakeup ,~~ Chained IRQ

: wenss_wlan.0 :
( log_main } wlang

Binder_3

Compiler
b flush-0:17
flush-179:0

cision

ns 13 ms 26 ms 41 ms 91 ms 98 ms

ume Suspend
ning Tasks) (Sync Filesystem Buffers)

ActivityManager




Drowsy Wake Set: Pull Data

> 4 .
(D Task Device CO IRQ / Wakeup ,~~ Chained IRQ

( wenss_wlan.0 )

T

(lRQ 48 ‘(IRQ 362 )

l

(platform) ( msm- SSbI 0 ) (rtc pm8xxx) (Benchmark) (Worker)<:m
(msmgplo] (pm8921 core] rtio ) (ServerThread) Blnder 3
(atam ) (PowerManager ) _binder m
Time (ms) (/dev/alarm)—V(AIarmManager)—V(Act|V|tyManager)—>(B|nder 1 (Blnder 1) (Blnder 2)
| | | | | | >
0 ms 4 ms 6 ms 13 ms 26 ms 41 ms 91 ms 98 ms
Resume Suspend
(Thaw Running Tasks) (Sync Filesystem Buffers)

15 tasks thawed & 16 devices resumed



Implementation

Implemented Drowsy within Android kernel

Platform: Google Nexus 4 (“Mako”)

Version: 4.2.2 (Fork of Linux 3.4)

SLOC: ~4,600




Instrumenting Android

For determining when to add tasks/devices to wake set

FS Calls (file_operations)
Sockets (net_device_ops) / Instrumented by Drowsy
Attributes (device_attributes)
MMIO (mmap)

Q) Devices

© B A g = R R g
c % ’ \I
o A IRQs .
3 AT ic_handlle_ir :
& ©1 | Drivers | Jereric-nandieia f Hardware |.
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Wait Queues
(try_to_wake_up)



Instrumenting Android

For determining when to add tasks/devices to wake set

FS Calls (file_operations

o) - _0ps)
Attributes (device_attributes)
MMIO (mmap)

/ Instrumented by Drowsy

Devices
IRQs

Drivers | 9eneric_handle_irq | Hardware

Device Classes
‘g 'I""i'~

&

IPC (ashmem, signals)
&

Wait Queues
(try_to_wake_up)



Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:

.open = &drv_open
Tasks .regd = &drv_read
.wWrite = &drv_write



Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:

.open = &drv_open

Tasks .regd = &drv_read |
.write = &drowsy_write
.write_impl = &drv_write



Example: file_operations

FS Calls (file_operations)

struct file_operations d_fops:
.open = &drv_open
Tasks .regd = &drv_read |
.write = &drowsy_write
.write_impl = &drv_write

int drowsy_write(File *f, ..)

. Device *d = fileToDevice(f)
if(d»state == Suspended)
. resumeDevice(d)

f>f_ops.write_impl(f, ..)



Evaluation: Benchmarking

—0n
—Drowsy

On—

Drowsy— Suspend Suspend

Release Acquire
Wakelock Wakelock

Handle
I/O Event

ALM Set a future vvakeup alarm
BT2 Acceptincoming Bluetooth connection
PUL Fetch weather update (and set alarm)
PSH Receive incoming push notification
SEN Sample the accelerometer (and set alarm)



Evaluation: Measurement
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Evaluation: Measurement

Function
Generator
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Evaluation: Measurement

LED Toggled On
(Software Timestamp)

°
o) ]
+ - < |
Function >°-
Generator ]/
§1MQ = <

Time

|Phone — VShunt/ RShunt



Improvement: Wakeup Events
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Improvement: Wakeup Events

Bl Android Bl Android Plus [ Android Plus (1 Core, Powersave)
Bl Drowsy [ IDrowsy (1 Core, Powersave)

ALM

~ Drowsy is 1.5-5x as
~energy efficient

BT2

| ; PUL p—
cpuidle entered deep '
idle states more often

in the Drowsy state

6x 5x 4x 3x 2x 3x 4x 5x 6X
Time Speedup Energy Efficiency




Improvement: Wakeup Events

Bl Android Bl Android Plus [ Android Plus (1 Core, Powersave)
Bl Drowsy [ IDrowsy (1 Core, Powersave)

ALM

BT2

——

PSH

SEN
6Xx 5x 4x 3x 2x 1x 1Ix 2x 3x 4x 5x 6X
Time Speedup Energy Efficiency




Wakeup Cycle: Pull Data
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Wakeup Cycle: Pull Data

Android cvent
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Wakeup Cycle: Pull Data

Android Event
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Improvement: Battery Life
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Improvement: Battery Life

Drowsy Battery Life Improvement (%)
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Summary

Existing power management not optimized for short-lived events

wakes up the minimal set of tasks and devices

Drowsy

is 1.5 - 5x as enerqy efficient for short-lived events

Source code is available at:

www.cs.umd.edu/projects/drowsy/




