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Abstract

Physical distancing between individuals is key to preventing the spread of a disease
such as COVID-19. On the one hand, having access to information about physical
interactions is critical for decision makers; on the other, this information is sensitive
and can be used to track individuals. In this work, we design Poirot, a system
to collect aggregate statistics about physical interactions in a privacy-preserving
manner. We show a preliminary evaluation of our system that demonstrates the
scalability of our approach even while maintaining strong privacy guarantees.

1 Introduction

COVID-19 is a contagious disease that is known to spread rapidly through person-to-person contact.
To curb its spread, many state governments announced lockdowns, and offices and schools were
temporarily shut down. While such measures help stabilize the infection rate, these measures cannot
be implemented indefinitely.

For organizations to reopen, ideally, they would need relevant data about adherence to physical
distancing [3]. This will inform their decisions on measures and interventions to reduce the risk of
contracting the disease. For instance, such information can help assess the effectiveness of current
policies such as opening at a reduced scale and also act as a feedback loop to inform new policies.
They can also help identify hotspots and to better allocate sanitation resources. Individuals can
also benefit from such information since it helps them understand how they are adhering to social
distancing policies. On the other hand, information required to track physical distancing is very
sensitive since it can reveal users’ location trajectories. Thus, there is a tension between obtaining
such physical distancing information and ensuring individuals’ privacy.

The goal of our work, Poirot, is to collect necessary information about individuals’ physical inter-
actions in a privacy-preserving manner to provide actionable information to decision-makers and
the individuals themselves. Our work measures physical interactions through the number of contact
events between individuals; such measurements are directly related to the disease’s spread and, thus,
a crucial enabler to decision-making. To ensure privacy, we collect and release aggregate statistics
of contact events that cannot be linked back to any individual. Thus, Poirot can provide utility to
organizations and individuals with little loss of privacy.

Outline. In this paper, we describe the overall design of Poirot in Section 2, elaborate on one aspect
of the system, the differentially-private release of statistics in Section 3, and present a preliminary
evaluation in Section 3.

Authors: ∗ denotes equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Auth
Server

Advertisements
<   , Time, Loc, Dist>
<   , Time, Loc, Dist>

Poirot
Server

Code

Code

{Token      }

Poirot
Server 1

Poirot
Server N

…

1
2

3
6

~1
Month

Cont.

Daily

Pe
rm

is
si

on
D

is
co

ve
r

C
on

ta
ct

s
U

pl
oa

d 
Su

m
m

ar
y

SN

S1

5

4 Code

ID, {Attr}

Secret
Shares

Period (1hr):
9/22 10:00

Summary

Data:
[2, 0, 5, …]

T

T

T+

+

# of contacts
per location bin

What is the average number of 
contacts for <location, time> pair?

Users Admins

MPC

Poirot
Server 1

Poirot
Server N…

S1S1 SNSN

Noise
!

S1 SN

How many contacts do I 
have on a daily basis?

When is it safest for me to 
visit a given building?

Which buildings require 
policy changes?

Are certain groups at 
higher risk?

Individuals Administrators
       Poirot

Average Contacts Per Day

By Location
Dining Hall

High

Med

Low

Collection Processing Usage (University Example)

Figure 1: Overview of the Poirot workflow and architecture, broken down into three phases:
collection, processing, and usage.

2 Design
As shown in Figure 1, the key actors involved in Poirot are users (and their smartphones), admin-
istrators, authentication servers, and some compute servers. Poirot protects sensitive data sent by
individual users from the administrators who receive released statistics, any subset of the compute
servers, and authentication servers. We assume that both users and servers are semi-honest, meaning
they honestly participate in the protocol but may attempt to derive sensitive information. Users
provide accurate information, without attempting to maliciously modify the Poirot app. Authentica-
tion servers validate user credentials and provide proof of identity to the compute servers. Finally,
compute servers faithfully execute a secure multi-party protocol to evaluate queries. Compute servers
may learn the total number of days for which a user has uploaded their data and which users are
participating. We also assume that all but one compute server may collude with each other.

2.1 Workflow
Collection. Users must first obtain permission to participate in the system, which happens on a
recurring basis (e.g., monthly). This process follows an OAuth flow whereby the user provides
an identity to Poirot via an authorization service. The app and Poirot server participate in a blind
signature [1] protocol to generate tokens for uploading data; this decouples identity from data, as
the server can only validate a token but not identify the user who generated it. Tokens can encode
attributes of the user (e.g., student) based on the key used to sign the tokens (which the user can verify).

A contact event occurs when two user devices remain in close proximity for a period of time, where
the distance and duration are specified by a policy (e.g., 6ft and 15min for COVID-19). To discover
contact events, the app uses Bluetooth to exchange identifiers with nearby participating devices.
Unlike existing contact tracing applications, we are interested in detecting contacts regardless of
whether either user has tested positive for COVID-19. To maintain long-term unlinkability of a
device’s identifiers over time while supporting long-running contacts (e.g., hours), identifiers are
changed every epoch (nominally 15min) but both the previous and current epoch identifiers are
broadcast.

Every day, the app computes and uploads aggregate summaries of all recorded contact events for that
day. The aggregate summary contains a vector of counts, where each entry corresponds to a location
bin (e.g., county in a state). The app generates secret-shared versions, one per compute server, which
ensures that the compute servers do not learn the contents of individual summaries.

Processing. At this point, the compute servers have secret-shared contact summaries for all par-
ticipating users for the previous day. The servers participate in a multi-party computation (MPC)
protocol [5, 11] to compute aggregate statistics over the secret-shared summaries from all users. As
part of the MPC protocol, Poirot adds noise to satisfy differential privacy (DP) [4] such that the
released statistics are accurate while not revealing sensitive information.

Usage. Poirot disseminates the aggregate statistics computed in the previous phase for use by
individual users and administrators. In our example, we consider a university setting to highlight the
utility in being able to answer common questions for both individuals and administrators. University
administrators, for instance, may change policies to reduce crowds in certain locations according to
the number of contact events. Users can understand how safe they are being, and may change their
behavior to avoid visiting certain locations (e.g., dining hall) at times of high traffic.
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3 Processing on the Servers to Release Differentially-Private Statistics
In this section, we elaborate on the processing step, focusing on the differentially-private release of
statistics. Each day, the app uploads secret-shared aggregate summaries of all recorded contact events
to the compute servers. Since the servers receive these summaries from multiple users, they first
synchronize with each other to ensure that they have shares corresponding to the same sequence of
users for a given day. Next, the servers process these summaries using MPC in batches, maintaining
secret-shared aggregates after processing each batch. Whenever statistics are to be released to
administrators, they employ the differentially-private mechanism described in Algorithm 1. For
simplicity, we use two servers in our description (and experiments) and use the noise addition
approach from [9]. This can be extended to N > 2 semi-honest servers, in which case we can use
the approach by Narayan and Haeberlen [8] to bound the added noise. We also assume that there
is one batch containing synchronized information about all users and the statistics are released the
following day after all (or most) users have uploaded their summaries. In practice, some users may
also upload their contact summaries a few days later (e.g., due to bad network connection); we can
extend the algorithm to release statistics again after taking into consideration the privacy loss.

Algorithm 1: Computing differentially-private average contact events for each bin under MPC
Input: cj ,pj , cmax, ε
– cj is a vector over bins storing number of contact events for a user j
– pj is a vector over bins describing whether there was a contact event for a user j
– cmax is a vector containing the maximum possible contact events per bin
– cj and pj are secret-shared to servers SA and SB , cmax is known in the clear

Output: A vector over bins containing differentially-private average number of contacts õ

Protocol:
– Each server Sx samples two noise vectors vx and v′x, where vxi ∼ Lap(

2·cmax
i
ε

) and v′xi ∼ Lap( 2ε )
Using MPC, servers SA and SB jointly compute:

– aggregate vectors c =
∑
j c
j
i and p =

∑
j p

j
i

– noisy aggregate vectors c̃ where c̃i = ci + vAi + vBi , and p̃ where p̃i = pi + v′Ai + v′Bi

Each server receives c̃ and p̃ in the clear and outputs õ where õi = c̃i/p̃i for each bin i

Theorem 1. Algorithm 1 satisfies ε-differential privacy.

Proof. The MPC protocol can be abstracted as two mechanisms:M1, which computes the aggregated
contacts over all bins, andM2, which counts how many individuals are present in each bin. As
each bin is (ε/2)-DP and all bins are disjoint, we can apply parallel composition [7] to show that
bothM1 andM2 are each (ε/2)-DP. Furthermore, sinceM1 andM2 are both Laplace mechanisms
with privacy parameter ε/2, by applying sequential composition [7], we show that the MPC protocol
satisfies (ε/2 + ε/2)-DP. Each server computes the final result with differentially-private outputs c̃
and p̃ as a post-processing step, thus maintaining the same differentially-private guarantee.

4 Evaluation
We have discussed how Poirot collects, processes, and utilizes aggregate contact event summaries in
a privacy-preserving manner. In this evaluation, we focus on a key performance aspect: the scalability
of the privacy-preserving computation of aggregate statistics.

Case studies. Our first case study captures a university setting, where members of the community
(e.g., students, faculty) use the app as classes resume during the pandemic. We choose Duke
University as our example, setting the number of users to 20K and the number of location bins to 256
(one per campus building). In the second case, we consider a state-wide setting, where all residents
participate and the state government is interested in per-county statistics. We chose North Carolina
(NC) as our example, setting the number of users to 10M and the number of location bins to 100
(one per county in the state). In the third case, we evaluate the accuracy of Poirot on a real-world
interaction data from the Copenhagen Networks Study [10].

Configuration. For the Poirot servers, we use two Google Cloud Platform servers in the us-central1-a
zone running Ubuntu Linux, provisioned with 2 vCPUs, 32 GB memory, 10 GB storage, and 1 Gbps
network bandwidth. For the app, we use a Samsung Galaxy A20e smartphone running Android 10.
We implement the MPC protocol using arithmetic circuits in the ABY framework [2].
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Number of Bins Execution Time
Case Location Time Users App (ms) Server (s)
Duke 256 24 20K 366.1± 8.9 94.3± 0.4
NC 100 1 10M 6.0± 4.4 776.1± 1.7
Copenhagen 1 24 705 1.68± 2.35 0.015± 0.0

Table 1: Performance for computing aggregate statistics.

Results. In Table 1, we show the average and standard deviation for the execution time of MPC
without differential privacy, both for the app (1000 trials) and the server (10 trials). There is limited
app-side computation to generate the secret shares, with 256 bins for 24 time periods taking 366.1ms
on average. Likewise, server-side computation is also efficient; even for 10M users in our North
Carolina example, the MPC protocol completes in just 776.1s. These results demonstrate the
scalability for large deployment scenarios.
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Figure 2: Comparing true averages with the distributions of differentially-private averages.
To study the accuracy of the released statistics, we use the Copenhagen Networks Study dataset which
contains contact events across times in the day for a period of 28 days. We split the daily contact
summary into 24 hourly bins; due to lack of location data, we treat all contact events as occurring
single location bin. Each user can have multiple contact events in an hour, and the sensitivity
of the average is the maximum possible number of contact events. To compute our results, we
consider two settings: (i) all-time-max: choosing sensitivity as 1.5× the maximum number of contact
events for any user in any day, and (ii) hourly-max: choosing sensitivity as 1.5× the maximum
number of contact events for any user in an hour. The second option is reasonable because we treat
each location-time bin as disjoint. Figure 2 plots the true daily averages along with distribution of
differentially-private noisy averages computed over 1000 runs (shown by the box plot with 1st and
99th percentile whiskers). We make two observations. First, the distribution of noisy averages are
closer to the true averages when we choose hourly-max (especially for ε = 0.1). This shows the
advantage of choosing an appropriate maximum based on the hour of the day. Second, we see that our
choice of ε provides different privacy versus accuracy trade-offs, with lower ε values providing better
privacy but lower accuracy, and vice versa. Poirot allows the administrator to precisely configure this
trade-off to satisfy their specific use cases.

5 Conclusion
Physical distancing is key to managing the spread of contagious diseases such as COVID-19. Our
insight is that aggregate statistics over contact events detected between individuals can serve as
actionable information while providing strong privacy guarantees for individual users. Poirot uses a
combination of multi-party computation and differential privacy techniques to preserve user privacy,
while scaling to large deployment scenarios (e.g., state-wide). We envision Poirot as a useful tool that
complements contact tracing applications [6] by providing information to enable proactive (rather
than reactive) actions.
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